新闻资讯
逆向工程(Reverse Engineering)也称反求工程,是指用一定的测量手段对实物或模型进行测量,根据测量数据通过三维几何建模方法,重构实物的CAD模型,从而实现产品设计与制造的过程。与传统的设计制造方法不同,逆向工程是在没有设计图纸或图纸不完整,而有样品的情况下,利用三维扫描测量仪,准确快速地测量样品表面数据或轮廓外形,加以点数据处理、曲面创建、三维实体模型重构,然后通过CAM系统进行数控编程,直至利用CNC加工机床或快速成型机来制造产品。
逆向工程包括形状反求、工艺反求和材料反求等几个方面,在工业领域的实际应用中,主要包括以下几个内容:

1、新零件的设计,主要用于产品的改型或仿形设计。

2、现成零件测量及复制,再现原产品的设计意图及重构三维数字化模型。

3、损坏或磨损零件的还原,以便修复或重制。

4、产品的检测,例如检测分析产品的变形,检测焊接质量等,以及对加工产品与三维数字化模型之间的误差进行分析。

逆向工程技术为快速制造提供了很好的技术支持,它已经成为消化吸收和二次开发的重要途径之一。逆向工程技术主要包括两方面内容:数字化技术和曲面重构技术。数字化技术是利用三维扫描测量仪采集实物或模型表面数据。曲面重建技术是根据测量所得到的几何表面的一系列点数据,构造出型体曲线、曲面,最终重构三维模型。

逆向工程作为对已有产品进行数据测量拟合、分析、改进设计和实现新产品开发的一种重要手段,有效地加快了新产品响应市场的速度。逆向工程可以输出快速原型制作及加工的多种数据格式,并支持不同用途。
二、水泵叶轮的三维数据测量

1、数据采集实施条件

随着传感技术、控制技术、图像处理和计算机视觉等相关技术的发展,出现了各种各样的物体表面几何数据获取方法,检测设备为产品三维数据的获取提供了硬件条件。目前,使用较多的有德国、英国、意大利、美国等国家生产的三维扫描仪和三坐标测量机。从测头结构原理来说,可分为接触式和非接触式两种。其中,接触式测量又可分为硬测头和软测头,这种测头与被测物体直接接触,获取数据信息,比较常用的是三座标测量机(CMM)。非接触式测量可分为光学法、工业CT、超声波法和磁共振(MRI)等。在逆向工程中,光学测量法应用最为广泛。典型的光测头是运用光学与激光的原理,包括激光扫描、光学扫描。

2、光学扫描仪在曲面扫描中的优势

实物的三维离散采样速度及数据质量是影响逆向工程技术应用的重要因素之一。三坐标测量机(CMM)是一种较为成熟的接触式测量设备。它具有噪声低、精度高(可达±0.5μm)、重复性好等优点。它的缺点包括测量速度慢、效率低;对软体对象难以做精密测量;需要对测头表面损伤和测头半径进行补偿等。测量数据的特点是高精度低密度。

由于近年在分区域测量技术上的突破,使得投影光栅法的测量精度得到进一步的提高。比如说德国GOM公司的ATOS流动光学三维扫描仪,测量速度大于43000点/s,单幅照片可扫描点数最大可达400,000个点,单幅照片精度为±0.03mm,整体测量精度小于0.1mm/m。光学扫描仪尤其便于复杂曲面的扫描,而CMM只能测量复杂曲面上有限的点,不能完整反映出曲面的形状。虽然其测量单点精度较高,但用有限的点去描述复杂曲面反而使整体精度大大降低,而光学扫描仪则恰恰相反。另外,光学扫描仪还具有测量范围大、携带方便等优点。ATOS光学扫描仪配合高分辨率数码照相系统使扫描范围可达8m×8m甚至更大,并且可以很方便地移动到实物现场工作。它不仅适于复杂轮廓的扫描,而且常用于汽车、摩托车内外饰件的逆向造型工作。

笔者在此采用德国GOM公司的ATOS光学扫描仪(ATOS I 600 EU)进行数据采集,测量精度为0.1mm/0.5m。扫描方式:光栅原理及GPS定位原理。ATOS扫描仪在测量时,可随意围绕被测物体移动,利用十一幅不同宽度的光栅反射信息,再经数据影像处理系统计算处理,即可得到实物表面点数据。

3、水泵叶轮扫描的前期准备工作

为了方便叶轮扫描和保证扫描的精确性,需对叶轮做必要的前期准备,如贴参考点、物体表面喷涂显像剂和仪器与软件校准等。

4、水泵叶轮扫描过程

叶轮的整个外形都需要扫描,因此无法完成对叶轮的一次性扫描。根据叶轮的形状,把零件分成上、下两部分,分别进行扫描。然后再在ATOS软件中,通过公共参考点把分别扫描所得的两个文件合并为一个整体。